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I. Introduction 
The measurement of error motion of the axes of-rotation is 

an important item in the geometrical accuracy of machine tools 
and measuring machines. However, it has not been treated explic- 
itly in the tests proposed by Schlesinger or Salmon, or in the 
IS0 Recommendation R 230. 

The first methods developed-for the measurement of this 
.~ 

error motion have been described by J. Tlusty [l] in 1959 and by 
J. B, Bryan in 1967 [2]. A subgroup of the Scientific Technical 
Committee Me was formed in 1972 at the suggestion of J, B. Bryan 
to compose an unambiguous formulation for the measurement and 
evaluation of the error value. The subgroup's task was to draw 
up a unification document on terminology and measuring methods 
concerning the error motions of axes of rotation. The ANSI draft 
standard, "Axes of Rotation," sponsored by the American Society 
of Mechanical Engineers, was used as the basic document for the 
discussion [3]. Comments were received from members from Belgium, 
France, Germany, Netherlands, Poland, Switzerland, Czechoslovakia, 
and the USA, In the General Assembly in 1975 the final version of 
this document was approved by the Scientific Technical Committee 
Me. 

The scope of the unification document is: 

l The unification of methods of describing and testing axes 
of rotation found in machines to produce, measure, or 
handle manufactured products. 
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l Specification and measurement criteria that consider the 
functional use of the axis and permit a meaningful 
description of the axis as it performs its actual 
function. 

The instrumentations for testing error motion are not considered 
in the document. 

In addition to the work of the Scientific Technical 
Committee, an increasing number of industrial people are 
evaluating the axes of rotation of their machines. However, 
many erroneous measuring procedures are used, For example, in 
many places the radial error motions of lathes are defined with 
the two perpendicular gauges method. Also the evaluation methods 
differ from place to place. 

The goal of this paper is to show, with some actual 
examples, the general philosophy of the unification document. 

2. Arguments for Measuring the Error Motion of 
Axes of Rotation 

Consider a cylindrical cutting operation on a lathe, using 
an ideal cutting tool that is capable of cutting in exact accord- 
ance with its position without deflection or wear and that has a 
flat nose with a width equal to the longitudinal feed per revolu- 
tion. A perfect cylinder would be cut if the axis of rotation 
remained parallel to the feed motion and stayed a constant distance 
from the tool nose. However, if the distance between the axis of 
rotation and the tool changed (due to a geometrical error in the 
front bearing, for example), the workpiece would present geomet- 
rical form deviations. The variation in the distance between the 
axis of rotation and the tool is called the error motion of the 
axis of rotation in this paper. 

When the error motion is not at all repetitive, i.e., when 
it is purely random, the out-of-roundness of the cylinder, 
measured over a sufficient number of feed-marks, is practically 
zero; however, the workpiece does show roughness. 

The functional behavior of the produced part can be 
strongly influenced by the geometrical deviations, out-of- 
roundness, undulations, and roughness. Therefore it is indis- 
pensable, for characterizing the geometrical accuracy of a 
machine tool, to measure and describe in a unique manner,. the 
error motion of the axis of rotation (see Fig. 1). 

Similar arguments can be given for most other cutting 
operations and many measuring devices. 

3. Sensitive Directions 
The motion of the axis of rotation, as well as the motion of 

the tool post, can generate geometrical form deviations in the 
produced cylinder. However, when both motions are identical, for 
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c 
Fig. 1. Three-dimensional representation of the geometrical 

deviations due to an axis-of-rotation error motion. 

example, in a lathe mounted on board a rolling ship, the workpiece 
accuracy is not influenced. Thus, what is important is the 
relative motion between the axis of rotation and the tool. It 
involves only the structu.raZ loop, i.e., the mechanical com- 
ponents which maintain the relative position between the work- 
piece and the tool. 

Only one component of the relative motion has to be con- 
sidered. In the cylinder cutting operation, a relative motion in 
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(a) (b) 
Fig. 2. Error due to relative motion in (a) sensitive direction 

(one-forTone error) and (b) nonsensitive direction 
(second order error). 

the radial direction cuts a one-for-one form error into the work- 
piece. Hence, this radial direction is called a sensitive 
direction (Fig. 2a), 

A relative motion in the feed direction does not influence 
the geometrical precision, and the influence of a relative motion 
in the cutting speed direction is only of second order conse- 
quence and can be neglected. Hence, these two motions are in a 
nonsensitive direction (Fig. 2b), 

From these concepts the following general definitions have 
been developed: 

l The sensitive direction is parallel to a line perpen- 
dicular to the ideal generated workpiece surface through 
the instantaneous point of machining or gauging. 

l A non-sensitive direction is along any line perpen- 
dicular to the sensitive direction. 

Two types of sensitive directions are recognized: the fixed 
and the rotating sensitive directions. In the fixed sensitive 
direction, the workpiece rotates with the axis of rotation and the 
point of machining or gauging is'fixed. Examples of fixed 
sensitive directions are shown in Fig. 3 for some turning opera- 
tions. In the rotating sensitive direction, the workpiece is 
fixed and the point of machining or gauging rotates with the axis. 
Figure 4 illustrates the rotating sensitive direction at two 
instants in time in jig boring a hole. 

4. Fixed Sensitive Direction (Rotating Workpiece) 

4.1 Radial Sensitive Direction 

4.1.1 Principle 
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Fig. 3, Sensitive direction in (a) facing, (b) turning, and 
(c) chamfering (taken from Ref. 3). 

Fig. 4. Rotating sensitive direction at two instants in time in 
jig boring a hole (taken from Ref. 3). 

In a groove-plunging operation (Fig. 5) the sensitive 
direction is along a radial line going through the tool nose. 
The relative displacement between the axis of rotation and the 
tool, measured along this radial line, is called the radial 
motion in that particular axial position. 
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(a) (b) 

(d) 

Fig. 5. Radial plunge turning: (a) plunging operation; 
(b) measuring set-up; (c) figure on the screen; 
(d) section of the workpiece. 

The test setup for measuring this radial motion generates 
on the screen of an oscilloscope a vector rotating in synchronism 
with the spindle. The end point of the spindle appears as a 
bright spot on the screen. The length of the vector is modulated 
by the motion signal, which is detected by a noncontact displace- 
ment transducer mounted on the tool post. The transducer measures 
the gap between'its sensitive surface and a spherical master fixed 
on the spindle (Fig. 5b). 

If no error motion were detected, the image on the screen 
would be a perfect circle, and the part produced with an ideal 
cutting tool would be a perfect cylinder. 

However, if at the moment t 3 the distance between the axis 

of rotation and the gauge increases, a hill will be drawn on the 
screen (Fig. 5~). A machined workpiece (Fig. 5d) would also 
present a hill at that particular place (i.e. point 3). 
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To be consistent with the International Standards, the 
unified document recommends considering a motion of the axis of 
rotation towards the tool as positive. However, to simplify the 
comparison between the measured error motion of an axis of rotation 
and the out-of-roundness of the workpiece machined on this axis, the 
sign convention for roundness measurement is used in this paper. 
Thus, an increase in the distance between the axis of rotation 
and the tool, which generates a hill on a workpiece, also gen- 
erates a hill on the screen of the oscilloscope. Hence, by taking 
the scales into account, the figure on the screen of the oscil- 
loscope corresponds to the best workpiece roundness the machine 
is capable of producing under ideal cutting conditions at the 
considered rotational speed of the spindle. 

When the spherical master is perfectly concentric with the 
average position of the axis of rotation, the figure on the screen 
is called an error motion polar plot. Generally the picture of 
the screen will be taken over several revolutions with a camera 
attachment. 

The capability of the method will be demonstrated with an 
example. To choose the optimum machine for the production of a 
precision element, we analyze the error motion polar plots of the 
workpiece spindles of the available cylindrical grinding machines 
as described below. 

Figure 6 shows an error motion polar plot from a 5-year- 
old machine. As the pattern of the polar plots are identical for 
all rotational speeds, the origin of the error motion was looked 
for in the bearing itself. It was found that, due to a bad 
bearing seal, grinding dust penetrated the front bearing, causing 

(4 b) 
Fig. 6. Cylindrical-grinding machine: (a) polar 

error motion of the workpiece spindle; 
lot showing 

(by polar plot 
showing workpiece out-of-roundness. 



-8- 

wear with a wavy pattern in the outer ring of this bearing. 
Figure 6b shows that the polar plots of the out-of-roundness of 
the workpieces produced on this cylindrical grinding machine have 
the same shape as the error-motion polar plot on the screen of the 
oscilloscope. 

4.1.2 Generation and Modulation of the Rotating Vector 

As oscilloscopes with polar inputs are generally not avail- 
able, the rotating vector can be obtained by applying sine and 
cosine signals generated by the rotation of the spindle, to the X 
and Y inputs of a common oscilloscope. 

In the method described by Bryan, et al. [2], these two 
signals are generated by two circular cams, eccentric by 0.725 mm 
in perpendicular directions. The cams were mounted on the spindle 
and sensed by two gauges (Fig. 7a). 

In the method described by Vanherck and Peters [4], a small 
(57 g) commercial vector resolver unit is physically attached to 
the axis of rotation, the rotor of which is fed by a carrier signal. 
Demodulating and filtering the resolver output yields the sine and 
cosine signals (Fig. 7b). Multiplying these sine and cosine. 
signals by the error motion signal yields the length modulation of 
the rotating vector. To get a true image of the out-of-roundness of 
the machined workpiece, it is necessary to reverse the rotation of 
the vector on the screen with respect to the rotation of the 
spindle (Figs. 5c and 5d). On the screen the workpiece is pre- 
sented as stationary, but on a grinder or lathe it is rotating. 

4.1.3 Compensation for the Spherical Master's Eccentricity 
Figure 8 shows that, even when the geometrical axis of the 

workpiece blank does not coincide with the axis of rotation, a 
perfect cylindrical part could be machined if the error motion of 
the axis of rotation were zero. This is only true, however, if 
second order effects, such as unbalance, are ignored. Thus, an 
eccentricity of the workpiece blank with respect to the spindle 
is of no consequence. 

On the other hand, the spherical master should theoretically 
be perfectly centered on the axis of rotation. Although the 
sphere is mounted on a special adjustable rig, it is impossible to 
center it perfectly by mechanical means. When the value of this 
eccentricity is of the same order or larger than the error motion, 
the figure on the screen could be deformed as shown in Fig. 9. 
This deformation is called a limacon and could be misinterpreted 
as an error motion. 

Both previously described methods provide an electronic 
compensation of the master ball eccentricity, by adding an 
adjustable amount of sine and cosine components to the gauge 
signals. 
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Fig. 7. Generation of the rotating vector: (a) two cams methods 
(Bryan); (b) vector resolver method (Vanherck). 



Fig. 8. Machining of eccentric workpiece. 

Fig. 9. Deformation of the polar plot due to the eccen.tricity of 
the sphere. 

4.2 Axial and Angular Motions 
In a face-cutting operation on a lathe, the departure from 

flatness (m) at a given point K on the workpiece, can be de- 
composed into two components, i?x and %?? (Fig. 10). 

The component z is equal to an axial motion z(t) in which 
the axis of rotation remains coaxial with its average position 
and moves axially with respect to it. 

The component f;r is due to the angular motions a(t) in 
which the axis of rotation moves angularly with respect to its 
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Fig. 10. Error motion in face cutting (taken from Ref. 3). 

average position in the plane-of the axial and radial motions. As 
the angular motion c%(t) is very small, the motion component ER 
can be assumed equal to the product of the angular motion and the 
radius R to the considered point K: 

LM = a(t)R. 

The axial motion can be measured with the apparatus shown 
in Fig. 11, and can be displayed in a polar plot by the same 
electronic circuit as described for the radial motion. However, 
as shown by Fig. 12, a once-per-revolution sinusoidal motion 
causes a departure from flatness. This once-per-revolution 
sinusoidal component, should not be compensated; it is a part of 
the error motion to be measured. 

,- SPHERICAL 

Fig. 11. Measuring setup for axial motion. 
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Fig. 13. Measuring setup for angular motion. 

The angular motion can be measured using the arrangement 
shown in Fig. 13. The two spherical masters, separated by a 
distance L, have to be mounted as concentric as possible with 
respect to the axis of rotation. 

The angular motion can be deduced from the difference in 
the output signals of the gauges, 

a(t) = 
X,(t) - x,(t) 

L ¶ (1) 

and can be displayed and compensated in the same way as for the 
radial motion. 

5. Evaluation of the Motion Plots 
After the pictures of the motion polar plots have been taken, 

the error motions have to be expressed in unambiguous values. 

5.1 Error Motion Polar Plots 
Polar plots taken over several spindle rotations for radial 

and axial motions are known as total error motion polar plots 
(Fig. 14). 

When a cylinder is machined on a lathe, using an ideal cutting 
tool with large nose radius, the out-of-roundness of the part is 
determined by the locus of the smaZZest distances between the tool 
nose and the axis of rotation. On the picture of the screen this 
corresponds to the contour of the inner boundary of the total error 
motion polar plot, which is referred to as the inner error motion 
polar plot. 
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Fig. 14. Polar plots of error motion: (a) total error motion; 
(b) average error motion; (c) fundamental error motion; 
(d) residual error motion; (e) random error motion; 
(f) inner error motion; (g) outer error motion. 

When with a similar tool a hole is machined by jig boring, 
the out-of-roundness of the part is determined by the locus of the 
largest distances between the tool nose and the axis of rotation. 
On the total error motion polar plot this can be represented by its 
outer boundary and is referred to as an outer error motion polar 
.,lr\ 

Ihe error motion component, which is repetitive from 
revolution to revolution, can be defined by averaging the error 
motion polar plot at each angular position over the number of 
recorded revolutions. 
motion polar plot. 

This polar plot is called an average error 

The roughness of the machined part is directly influenced by 
the motion components being nonrepetitive from revolution to 



-15- 

revolution. This random error motion polar plot is defined as the 
deviation of the total error motion polar plot from the average 
error motion polar plot. 

It has been shown above that the once-per-revolution com- 
ponent of the axial error motion may not be compensated. On the 
polar plot this component is represented as the offset of the 
best-fit circle passing through the average error motion polar 
plot, and is known as the fundamental error motion polar plot. 

The difference between the average and the fundamental error 
motion polar plot is defined to find the sources of the axial error 
motion. It is known as the residual error motion polar plot. 

5.2 Error Motion Values 
The evaluation of an error motion polar plot (this means the 

expression of the error motion in an unambiguous value) will be 
done by a procedure similar to the one used in the evaluation of 
out-of-roundness. 

The error motion value is the scaled difference in radii 
between two concentric circles from a specified center just suf- 
ficient to contain the considered error motion polar plot. 

The polar chart center (P.C.) on the screen of the oscil- 
loscope is the center about which the vector rotates. 

The evaluation about a center not coinciding with the polar 
chart center has, in a first approximation, the same effect as a 
compensation of a once-per-revolution sinusoidal component of the 
error motion. This means that the small residual once-per- 
revolution component, due to an imperfect electronic compensation 
of the spherical master eccentricity, can be eliminated by 
evaluating the error motion's value from an appropriate center. 

However, for axial error motion, the once-per-revolution 
sinusoidal component may not be eliminated, this axial error motion 
has to be defined from the polar chart center. 

For the radial and angular error motions, one of the following 
centers can be chosen: 

l The maximum inscribed circle center (M.I.C.). 
l The minimum circumscribed circle center (M.C.C.). 
F The least squared circle center (L.S.C.). 
l The minimum radial separation center (M.R.S.). 

The specification of a measurement should at least contain " 
the type of error motion polar plot that has been considered and 
the center from which the evaluation has been carried out. For 
example, for an axial error motion the total error motion value 
about the polar chart center could be defined. This means the 
scaled difference in radii between two concentric circles from the 
polar chart center, just sufficient to contain the total error 
motion polar plot. For cylindrical cutting on a lathe, the inner 
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error motion value about the maximum inscribed circle center could 
be evaluated, etc. 

There is only one exception to this general rule. The random 
error motion is not defined as the difference in radii between two 
concentric circles, but as the scaled width of the total error 
motion polar plot, measured along a radial line through the polar 
chart center. 

6. Examples of Radial Error Motion Polar Plots 

Figures 15 through 17 show some typical radial error motion 
plots from lathes. Figures 15a and 15b are plots of a 7-kW lathe 
with a plain bearing spindle. For high speeds (375 rpm) the error 
motion is small, as shown in Fig. 15b. Figure 15a, taken at a 
rotational speed of 30 rpm shows that the speed was not high 
enough to form a stable oil film in the bearing. 

Figure 16a and b show the error motion of a spindle on conical 
roller bearings, from a 2-kW lathe at the same rotational speed 
(600 rpm). In Fig. 16a the spindle was driven by a belt, whereas 
in Fig. 16b it was driven by a gear drive. The influence of the 
drive can easily be detected from the polar plots. 

It is possible to insert a low-pass filter in the electronic 
circuit to eliminate the high frequency components. A nice 
application of these filters is shown in Fig. 17. The radial error 
motion of this 3-kW lathe is the resultant of two components, one 
of a structural deformation at 135 Hz due to vibration and one due 

(a> (b) 
Fig. 15. Polar plot of radial error motion from a spindle on plain 

bearings at (a) 30 rpm and at (b) 370 rpm. 



2JJm (a)’ - 
Fig. 16. Polar plot of r 

(a) driven by a 
adial 

belt 
error motion from a spindle 
and (b) driven by a gear drive. 

Fig. 17. Example of using a low-pass filter to filter the com- 
ponents of the structural vibrations: (a) unfiltered; 
(b) partially filtered; (c) almost all filtered. 

to a geometrical error in the conical front bearing. In Fig. 17b 
and c, the components of the structural vibrations are gradually 
filtered out. The image shifts but reproduces its shape in some- 
what more than two revolutions. This error is due to one roller 
having a slight1.y l.arger diameter than f-he average one, causing 
one error motion with a frequency of 0.43 of the spindle rotational 
frequency. The influence of the structural error motion 
shown in Fig. 

is nicely 
17a, which is taken without filtering. In Fig, 17~ 

the 135 Hz motion component was almost completely filtered out and 
shows perfectly the error motion component due to the improper 
bearing roller. 
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b) 
Fig. 18. Error motion plots of a precision lathe (a) without 

filter and (b) with filter. 

Figure 18 shows some radial error motion polar plots of a 
high precision lathe with continuous speed variation. The men in 
the workshop knew that the parts machined on this lathe sometimes 
presented a significant out-of-roundness, even when a flat-nose 
tool was used. A systematic analysis showed that high error motion 
values were detected at 1760 rpm, 880 rpm, 330 rpm, etc. 

For 330 rpm the polar plotshowed 16 lobes, for 880 rpm six 
lobes, and for 1760 rpm three lobes. It was found that the spindle 
had a low-damped natural frequency of 88.2 Hz. Each time this 
natural frequency coincides with a multiple of the numbers of 
revolutions per second, high error motions are generated. 

The computations have been summarized in Table 1. Some of 
the polar plots have also been taken with a low pass filter, re- 
ducing the 88.2 Hz component to 10% of its initial value 
(Figs. 18g to j). From these filtered plots, we can deduce that an 
appropriate damping of this spindle would drastically increase the 
machine's capability of producing parts with low out-of-roundness 
errors. 
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Table 1. Computation concerning the error 
motion polar plots of Fig. 18. 

Rotation 
Polar plot 

Without With Excited 
rpm (rps> filter filter frequency 

168 (2.80) a g X32 = 89.6 

332 (5.53) b h Xl6 = 88.5 

363 (6.05) c i Xl4 = 84.7 
x15 = 90.75 

725 (12.08) d j X7 = 84.56 
X8 = 96.64 

880 (14.66) e X6 = 87.9 

1760 (29.33) f* X3 = 87.9 

* 
The scale of polar plot f is half the scale 

of the other polar plots. 

7. Digital Evaluation of Radial Error Motion Values 
In the analog method, the evaluation of the error motion has 

to be carried out by tracing circles on the picture of the oscil- 
loscope. Although this method is valuable for most industrial 
applications, it can be proven that a direct digital measurement 
of the motion and the computation of the error motion value by a 
digital computer has many advantages. 

The capability of this method will be demonstrated with some 
examples. The radial and axial error motions of two, three-year- 
old 2.5-kW production lathes will be compared. Both machines were 
produced by the same manufacturer and have the same dimensions. 
However, the spindle of lathe G is mounted on radial plain bearings 
whereas lathe J has conical roller bearings. There is also a 
difference in the speed range of both machines. 

The radial error motion of the lathe on plain bearings, for a 
rotational speed of 90 rpm, is shown in Fig. 19. The total radial 
motion, without compensation for the residual eccentricity of the 
spherical master, is shown in the left upper corner. The end point 
of the arrow shows the position of the least square circle center 
(L.S.C.). Instead of tracing circles around this L.S.C., the 
corresponding once-per-revolution sinusoidal component has been 
removed digitally from the motion signal. After this transformation 
the least squares circle center coincides with the origin of the 
polar coordinates system. This yields the total error motion polar 
plot shown in Fig. 19b. The difference between the radii of two 
concentric circles from the L.S.C., just sufficient to contain the 
total error motion polar plot, is 2.37 pm. 
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Fig. 19. Polar plots showing radial error motion of a spindle 
rotating at 90 rpm on plain bearings, fundamental 
amplitude = 8.92 and fundamental phase = 20.33: (a) total 
motion; (b) total error motion; (c) random error motion; 
(d) average error motion; (e) cuter error motion; 
(f) inner error motion. 

Also, the inner, outer, average, and random error motion 
polar plots were traced. The following error motion values from 
the L,S,C. can be evaluated: outer error motion value = 1.8 urn, 
inner error motion value = 1.5 pm, average error motion value 
= 1.6 pm, and random error motion value = 1.3 pm. 

The axial error motion of the same lathe at the same speed 
is shown in Fig. 20. Since the fundamental component may not be 
compensated, the total error motion is evaluated from the polar 
chart center. The total error motion value is 11.5 urn. 

The outer and inner error motions are respectively, 10.2 pm 
and 10.4 Urn, which are several times larger than the cor- 
responding values in the radial direction. These significant 
values are due to the once-per-revolution sinusoidal motion com- 
ponent. Indeed, the scaled distance from the polar chart center 
to the least square center, indicated by the end point of the 
arrow in Fig. 20a, is 4.15 pm, which corresponds with a 
fundamental error motion of 8.3 pm. This motion can easily be 
explained by an out-of-squareness of the axis bearing. 
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Figure 20 also shows that the residual error motion, which 
is the difference between the average and the fundamental error 
motions, is composed of an ovality and an eight lobed figure. 
This component is due to a natural frequency of 12 Hz for the lathe 
on its foundation. 

The random error motion, which is the difference between the 
total and the average error motion, shows a once-per-two- 
revolutions component. This component is due to a slightly larger 
diameter of one of the balls of the axial bearing. 

The radial error motion of the lathe on conical roller 
bearings is shown in Fig. 21. The total error motion (about 7 pm) 
is large with respect to the average motion (1.7 pm). This is 
due to a once-per-2.3-revolutions component caused by a larger 
diameter of one of the conical rollers of the front bearing. 

(a> 

(4 

b) 

(4 

Fig. 20. Polar plots showing axial error motion of a spindle 
rotating at 90 rpm on plain bearings, fundamental 
amplitude = 4.15 and fundamental phase = -104.60: 
(a) total error motion; (b) average error motion; 
(c) random error motion; (d) residual error motion; 
(e) outer error motion; (f) inner error motion. 
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The total axial error motion, shown in Fig. 22, has a low 
value (about 2.2 urn) with respect to the radial motion. The 
distance from the P.C. to the L,S.C. is 0.71 pm. This means 
that an important part of the axial average motion is due to the 
fundamental motion (1.42 pm> caused by the nonsquareness of the 
bearings with respect to the axis of rotation. The random motion, 
with a value of 0.76 pm, is due to dynamic structural deforma- 
tions. 

This example proves that the axis of rotation measurement is 
not only valuable for the characterization of the machine tool's 
capability of producing workpices with low geometrical form errors, 
but is also powerful in tracing back the sources of the different 
error motion components. 

I - ,o.oc*,c”m 
(4 

- 
Y.00 “Iclm 

(d) k> (f) 

Fig. 21. Polar plots showing radial error motion of a spindle 
rotating at 180 rpm on conical roller bearings, fun- 
damental amplitude = 11.69 and fundamental phase 
= 26.95: (a) total motion; (b) total error motion; 
(c) random error motion; (d) average error motion; 
(e) outer error motion; (f) inner error motion. 
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Fig. 22. Polar plots showing axial error motion of a spindle on 
conical roller bearings, fundamental amplitude = 0.71 
and fundamental phase = -75.50: (a) polar plot; 
(b) average error motion; (c) random error motion; 
(d) residual error motion; (e) outer error motion; 
(f) inner error motion. 

8. Rotating Sensitive Direction (Fixed Workpiece) 

8.1 Principle 

In contrast to lathes, cylindrical grinding machines, etc., 
jig borers represent another basic type of machine in which the 
workpiece is fixed and the cutting tool or gauge rotates. Out-of- 
roundness measuring machines, such as the Talyrond, are also in 
thts category. 

Since the sensitive direction is along a line going through 
the tool nose (or gauging point); in these machines, the sensitive 
direction rotates with the tool or the gauge. 

The most logical solution for the detection of the radial 
error motion would be to fix the gauge radially on the rotating 
spindle and to mount the spherical marker on the workpiece 
(Fig. 23). The display on the screen of the oscilloscope and the 



compensation of the master's eccentricity can be done with the same 
electronic circuit as described for the fixed sensitive direction. 
This setup is not advisable for higher speeds because the gauge 
support has a low stiffness. The low stiffness is due to several 
factors: (1) the gauge support must be provided with an element.-- 
for the adjustment of the gap between the gauge and the master ball, 
(2) the setup creates a significant imbalance, and (3) the 
transmission of the capacitive-gauge signals through clip-rings is 
quite difficult. 

For high speeds the most commonly used apparatus is that 
proposed by J. Tlusty (Fig. 24). A horizontal and vertical gauge 
fixed on the table sense radially against the master ball, which is 
mounted on the spindle with a small offset. The gauge output 
signals are amplified and fed to the respective horizontal and 
vertical inputs of an oscilloscope (Fig. 24). 

The components of the motion signals, due to the offset of 
the spherical master, generate a circle on the screen of the 

SLIP 
RINGS 

ATING GAUGE 

Fig. 23. Setup with rotating sensitive direction for measuring 
radial error motion. 
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Fig. 24. Test method using a rotating sensitive direction for 
measuring radial error motion. 

oscilloscope. The radial error motions in the direction of the 
master ball eccentricity are radially superimposed on this circle. 
Motions perpendicular to the master ball eccentricity move the 
spot on the screen tangentially to the base circle, causing a 
negligible effect on the shape. Thus, this arrangement yields a 
measurement of radial motion along a rotating sensitive direction, 
which is parallel to a line joining the axis average line with the 
geometrical center of the eccentric spherical master. 

However, this setup is not valid for fixed sensitive direc- -- 
tions as for lathes, cylindrical grinding machines, etc. 

The difficulty in the method described above is the mechan- 
ical adjustment of the offset of the master ball. The offset 
direction must be parallel to the sensitive direction. If the 
distance between the center of the ball and the axis of rotation 
is too large, the diameter of the base circle will be so large 
that the departure from circularity of the figure on the screen can 
no longer be measured. If this distance is too small, the figure 
on the screen is completely deformed due to the crossings through 
the polar chart center. 

It is possible, however, to generate the base circle with a 
vector resolver, as proposed by P. Vanherck. The error motion 
signals, detected on a centered master ball, can be superimposed 
on this base circle using an electronic device. 

The setup for measuring the axial error motions for machines 
with rotating sensitive directions is identical to the one 
described for the fixed sensitive direction. 
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8.2 Typical Examples of Radial Error Motions with 
Rotating Sensitive Direction 

Figure 25 shows a typical example of the radial error motion 
of a 3-kW jig borer. The error motion showed an ovality in the 
same direction, at all speeds. An analysis of the machine showed 
that the radial stiffness of the spindle in its bearing depended 
strongly on the direction in which the load was applied. The 
direction with the lowest stiffness coincided with the axis of 
ovality of the error-motion polar plot. 

It is also possible to use a digital method for rotating 
sensitive direction. A typical example is shown in Fig. 26. The 
digital method has the capability of simulating all different 
angular tool positions with respect to the rotating spindle, from 
one single set of recorded motions. After digital compensation of 
the master ball's eccentricity, the total error motion value was 
found to be 3.2 urn. The average error motion value is 2.48 pm. 

On the same figure the two gauge signals are represented in 
rectangular coordinates to prove that the error motion value, which 
can easily be evaluated from a polar plot, can hardly be deduced 
from rectangular coordinates. 

9. Elimination of the Spherical-Master Roundness Error 

9.1 Principle 
A difficulty arises when the error motion of the spindle is 

of the same order or smaller than the out-of-roundness of the 
spherical master. It is, however, possible to separate the two 
sources of error by the method proposed by R. Donaldson [5]. 

3m 

Fig. 25. Radial-motion polar plot of a jig borer. 
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Fig. 26. Radial motion of a jig borer using a digital method, 
fundamental amplitude = 1.22 and fundamental phase 
= 18.34: (a) polar plot of total motion; (b) polar plot 
of total error motion; (c) polar plot of average error 
motion; (d) polar plot of random error motion; 
(e) polar plot of outer error motion; (f) polar plot of 
inner error motion; (g) output signal of gauge X; 
(h) output signal of gauge Y. 

Two measurement setups are required as shown schematically in 
Fig. 27. Arbitrary initial positions are marked as 8 = 0' by 
coincident marks on the part (test ball), spindle shaft, and spindle 
housing at the stylus position as shown in Fig. 27a. An initial 
polar record Tl(0) is then made, using normal polarity (in- 
creasing chart radius corresponding to increasing part radius).- 
In the second setup (Fig. 27b) the part and stylus positions have 
both been rotated 180' about the spindle axis while retaining the 
original shaft and housing positions. Two polar records are then 
made T2p(8) with normal polarity and T2s(U) with reversed 

polarity. 

Using the above notation, it follows that relative to some 
base circle the initial record Tl(U) can be expressed as 

~~(8) = p(e) + s(e) (2) 
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Fig. 27. Schematic test setups for (a) Tl(8) and (b) T2p(O> 

and T2s(e), and error separation by profile averaging 

for (c) part profile p(e) 
(taken from Ref. 5). 

and (d) spindle error S(0) 
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In Fig. 27b, the unchanged relative position of the part and stylus 
yields the same P(6) profile. However, axis motion toward the 
stylus in Fig. 27a becomes motion away from the stylus in Fig. 27b, 
so that 

T2P (0 > = p(e) - s(e) (3) 

The polarity reversal from T2p(e) to T2s(6) yields 

T2p> = - p(e) + s(e) (4) 

Adding Eqs. (1) and (2) and then Eqs. (1) and (3) yields 

p(e) = 112 [Tl(e) + T2p(e)l (5) 

s(e) = 112 k,(e) + T2s@)l 

Thus by recording Tl(6> and T2p(e) on the same polar chart the 

part roundness error profile P(0) is obtained by simply drawing 
a third average profile halfway between the first two, as shown 
in Fig. 27~. The same profile averaging procedure can be used 
to obtain the spindle radial motion error profile S(e) from a 
chart containing Tl(6) and T2s(e) (see Fig. 27d). The 

values of roundness and radial motion errors can be assessed 
by means of one of the methods involving concentric circles about 
a best fit center (minimum radial separation, least squares, etc.). 
The error values are not influenced by different base circle 
radii or different centering errors (limited only by polar 
distortion) for the various measurements. The method is only 
applicable to the repeatable, or average, portion of the error 
motion. 

9.2 Actual Example of a Master Roundness Elimination 
The radial error motion of the axis of rotation of a roundness 

measuring machine with rotating stylus was measured with a glass 
spherical master having roundness errors of the same order as the 
error motion of the spindle. 

The Donaldson eliminating method has been used with digital 
recording and computation. 

A homemade rotational recorder, consisting of a disk with 64 
equispaced holes, was fixed on the spindle. The frequency of the 
encoder output signal was multiplied by 16, using a ratio tuner 
to obtain 1024 samples per revolution. A single slot in the border 
of the disk was used to start the sampling period at the zero- 
degree reference position. 

The average error motion has been computed over these 
revolutions. The fundamental component, due to the eccentricity 
of the spherical master and the shift, due to thermal shift, were 
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Fig. 28. Example of eliminating the master roundness error: 
polar plots showing (a) spindle radial error motion and 
(b) spherical master profile. 

removed digitally. The correct 180" rotation of the master, for 
the second step, was checked by a light beam and mirrors. 

The sum of the averages of the two steps yields the radial 
error motion of the spindle (shown in Fig. 28a) with a total error 
motion value from the least square center of 0.035 urn. The dif- 
ference between the two average signals yields the roundness error 
of the spherical master with an out-of-roundness from the L.S.C. 
of 0.058 urn (Fig. 28b). 

To check the validity of the results the spherical master 
was rotated 90" about the axis of rotation and the complete test 
procedure repeated. This second axis-of-rotation error-motion 
polar plot had the same shape as the first one and a total error 
motion value of 0.033 pm. 

It can be concluded that even when the out-of-roundness of 
the master is 70% larger than the error motion, and at the same 
time a significant thermal drift is present, the axis of rotation 
motion can be evaluated with a precision of 0.002 urn for a total 
error motion of 0.034 pm. 

When the digital method is used, the out-of-roundness error 
of the spherical master can be stored in memory, so the error 
motion of an axis can be evaluated in one step, 
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10. Comparison of the Measurement of the Error Motion of 
Axes of Rotation and the Tests Prescribed by IS0 
R 230 (1961) 

Concerning the radial direction, the IS0 recommendation 
proposes to measure the out-of-true running (run-out) of a 
component at a given axial position (5.6). "The plunger of a 
dial gauge is brought in contact with the revolving surface to 
be tested and the readings of the instrument observed while the 
spindle is slowly rotated through one turn" (5.612.2). 

The run-out is evaluated as the difference between the 
maximum and minimum reading of the instrument. 

"In general this measured run-out is the result of: 

l The radial throw of the axis (the difference between the 
geometrical axis of the component and the rotating axis 
in the considered section). 

l The out-of-roundness of the component. 
l The errors in the bearings." (5.611.4) 

This means that a spindle with a small axis-of-rotation 
error motion and capable of producing workpieces with cross sections 
with a high degree of circularity, could, due to the out-of- 
roundness and the radial throw of the spindle nose, present a 
significant run-out. 

On the other hand, when the component on which the run-out 
is measured (e.g., the spindle nose) has been ground on the 
spindle in its bearings, the run-out could be very low even with 
a significant axis-of-rotation error motion. 

The run-out, detected on low speed rotating spindles, does 
not include the error motions due to structural vibrations 
excited by unbalances, belts, etc.; neither does it include the 
behavior of the bearings in the actual working conditions. 

The same comments can be made concerning the axial direction. 
The IS0 230 recormnends measuring at a low speed the camming of a 
component. 

"Camming is the resultant of various defects of the surface 
and axis of rotation: (a) surface not flat (b) surface and axis 
of rotation not perpendicular, and (c) periodic displacement of 
the axis" (IS0 R 230/5.631.1). 

The error motion of axes of rotation, however, have to be 
carried out at the actual working speed of the machine. This 
means that the actual behavior for finishing operations of the 
bearings and the structural deformations are included. On the 
other hand, the polar representation permits the separation of 
the error motions appearing in synchronism with the spindle 
rotation and generating form errors of the machined workpiece, 
and the nonsynchronized error motions which cause surface 
roughness. 
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It is generally possible to deduce from the shape of the 
polar plot the source of the error motion. 

It can be concluded that the IS0 R 230 does not prescribe 
tests for the measurement of error motions of axes of rotation 
in actual working conditions. The tests proposed by IS0 R 230 
are, however, quite valuable for the determination of the run-out 
of rotating elements. This yields the conclusion that both tests 
are completely complementary. 
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